
septembre 2002 – SÉcurité des Communications sur Internet– SECI02

A Time Stamped Virtual WORM System

A. Apvrille
�

& J. Hughes
�

1: Storage Technology European Operation,
1, Rd Point Général Eisenhower,

31106 Toulouse, France
Axelle Apvrille@storagetek.com

2: Storage Technology Corp.
7600 Boone Avenue North,

Minneapolis, MN 55428, USA
jim@network.com

Abstract

When backup operators have to handle giga bytes of information daily, they usually find the task hard
enough to leave security aside. This paper consequently intends to focus on proving documents’ authenticity
regarding both content and date. In the context of WORM technology, it proposes a media independent tamper
evident system - using original cryptographic hash function techniques - and secure time stamping within a
given accuracy. Finally, time stamping upgrade mechanisms are proposed to extend security guarantees over
years.

1. Introduction

The increasing digitalization and computerization of business processes have led to a burst in data volumes.
For instance, BNP Paribas faces a 150 Tera-Bytes backup weekly, Volkswagen roughly 100 Tera-Bytes daily...
Dealing with such large amounts of data is far from being an easy task, but keeping that data over years as legal
evidence adds up a significant challenge to the problem. As a matter of fact, several countries have recently
agreed to the suitability of electronic records in court trials in respect to a few constraints [Esg00] [Adap00,�
1316-1]. Commonly, electronic records are given the same legal value as any other handwritten evidence,

provided they are considered authentic by the court.

Typically, banks, insurances or Intellectual Property archive centers are concerned by the possibility of
reproducing some former document in front of a court. For such organizations there is a clear need for
a trustworthy archival system whose integrity and reliability (over years and volume) could not be argued
with. More precisely, the requirements of such a system are data security (protecting against or detecting
any alteration of data), longevity (dating documents precisely, and retrieving them after years of storage) and
performances (being able to process thousands of records without significantly downgrading performances).

The traditional long-term electronic document storage media is optical disc [Afn01], commonly referred to
as “WORM” (Write Once Read Many). But, actually, the WORM technology widens to any reliable system (a
media, some piece of hardware equipment, software etc.) onto which data is written only once, and is trusted
not to be modified: this is perfectly adapted to data integrity requirements. Unfortunately, regarding specific
constraints of long term record archival, existing WORM technologies put a few security issues aside. This
paper therefore intends to propose a new kind of WORM system - a time stamped virtual WORM system - to
improve those points.

The paper is organized as follows. Existing WORM systems are described and evaluated in section 2. Then,
we propose and explain the mechanisms of our time stamped virtual WORM system in section 3, and analyze

1

Apvrille & Hughes

the improvements which have been made in section 4. Finally, section 5 deals with how time stamped virtual
WORM systems can offer strong security features throughout years and future work to be done.

2. WORM devices

In this section, we first give an overview of existing WORM technologies. Then, we define precisely the threat
model which is considered. Finally, we evaluate existing technologies with that threat model.

2.1. Overview of existing WORMs

WORM is a technology designed for permanent data records. Data may only be written once onto media and
then becomes permanent (neither rewritable, nor erasable). On the contrary, read operations remain unlimited.
Williams [Wil97] has made the following classification:

P-WORMs (Physical - Write Once Read Many) are the best known. Recording creates a permanent
physical change in the surface of the support in such a way that this area cannot be restored to its original
state. Security is located at media level (see figure 1). For instance, a CD-R is a P-WORM.

E-WORMs (Coded - Write Once Read Many) use a factory pre-recorded write once code located on the
media itself. The code is pre-recorded by the manufacturer and then later recognized by the firmware
that switches to an overwrite prevention mode. Note data may actually be recorded on a rewritable
media. Security is at driver level (embedded code) and media level (pre-recorded code) - see figure 1.
For instance, StorageTek’s VolSafe �����	� [Abs00] technology is an E-WORM implementation.

S-WORMs (Software Write Once Read Many) use software to protect against overwriting (see figure 1).
Consequently, an S-WORM is media-independent.

Figure 1: Comparison between different types of WORMs. The lock on the figure indicates where security
actually resides.

2

Time Stamped Virtual WORM System

2.2. Threat model

Basically, this paper is going to evaluate archival systems with a simple question: given access to electronic
records, is it possible to guarantee their authenticity over years ?

More precisely, we suppose the attacker has physical access to stored data (for instance he can retrieve the
tape cartridge or the disk which contains the data) and can use proper equipment for its manipulation. The
purpose of this section is to make sure he cannot forge data undetectably.

A few possible vulnerabilities in this threat model have been detected:

 data integrity threat: attacker can possibly modify, truncate or erase data from the archival system.
More precisely, there are two levels of security: protecting against tampering (making it “impossible” to
modify) and detecting modifications (modifications are possible but will be detected).

 copy integrity threat: during a copy or a migration, attacker can possibly write something different onto
the copy, or ignore data he does not wish to copy. For long-term archival systems, this threat is important
as data is very likely to be migrated from one system to another one (because former system has become
obsolete, or because it has expired...). To be sure document’s authenticity will not be disputed, one needs
to prove copied data is strictly identical to original.

 timing threat: attacker can successfully change dates of records. For many formal documents, date is an
important information. For instance, insurance contracts, business agreements or buying orders should
not be backdated. Attackers can use two different approaches: forging dates, or using clock accuracy
problems. If an attacker can set up the date of an agreement so it has expired, he goes as far as altering
the document’s validity. Combined with data integrity threats, he can also forge a completely new buying
contract and assign the date of his choice. Concerning time accuracy, requirements depends on security
level to be obtained. At least, it is important to be able to provide a precision, and for instance state that
clock is correct within a given accuracy.

 hardware support dependency threat: attacker takes advantage of the fact security information cannot be
migrated to new support. This threat concerns the storage system’s longevity. Suppose in a ten-year time
backup operator would like to transfer all data onto a newer support that has better performances, or that
he has chosen for other reasons. If the secure storage system depends on hardware support data is written
to, then migrating data without losing security information might not be possible.

 bad authentication threat: attacker takes advantage of the fact document is unproperly authenticated to
dispute its reliability. For instance, imagine a company has signed a partnership agreement with another
company. If one of them wishes to prove the agreement existed, he’ll have to reproduce the agreement
signed by both of them. Actually, whether to sign or not to sign a document - and who should sign it - is a
specific property of the document itself, and does not globally concern the storage system. Consequently,
this paper will not address this issue, and will assume that this task is already achieved before getting to
the archival system. The archival system will take signed or unsigned documents as input, whether this
is required or not for each document.

2.3. Defeating existing WORM technologies

This paragraph intends to evaluate existing WORM technologies, according to the threat model established in�
2.2. Results are summarized at table 1.

First of all, concerning data integrity, S-WORMs show an obvious security hole: basic S-WORMs provide
no data integrity detection, and protection is poor as support itself is not protected. Any skilled user can per-
form an undetected record modification (or deletion) by simply by-passing the WORM software and using a
less restrictive one. E-WORM’s data integrity protection is not 100% sure, but is however more difficult to
by-pass: attacker needs to ruin or reload the pre-recorded code. P-WORMs are relatively secure, as they are

3

Apvrille & Hughes

Table 1: Existing WORM features at a glance.

Data integrity
protection

Data integrity de-
tection

Copy in-
tegrity

Hardware inde-
pendency

Secure time
reference

P-WORM yes (though not
perfect)

no bit-
comparison
(long)

no no

E-WORM yes, medium no “ no no
Basic S-WORM yes, but poor no “ yes no
Required features yes (or detection) yes (or protec-

tion)
yes (opti-
mized)

yes yes

inherently non-rewritable. However, a closer analysis may reveal potential data integrity threats: for instance, a
CD-R consists in a pattern of pits and lands that encode the information. Pits being permanent, it is impossible
to re-write the disc with new information, however it is still possible to add new pits, and consequently slightly
modify data on the CD-R.

Second, concerning time integrity, all existing WORMs unfortunately lack secure dating of documents. In
best cases, referenced time merely gives a vague idea of document’s creation date. For instance, on CD-Rs,
when a file is written, CD File System also stores the creation date of the file on the media. However, there is
absolutely no guarantee of accuracy for that date: it is provided “as is”.

Third, S-WORMs are inherently independent of any hardware support, which is a good point. On the con-
trary, P- and E-WORMs are not. If data stored on a CD-R is moved to a CD-RW (re-writable media), anybody
can obviously overwrite that data. Same problem occurs on E-WORMs: if you transfer data onto another sys-
tem which does not recognize the pre-recorded code, the system will not switch to a non-writable mode and it
will be possible to modify, overwrite, truncate or erase data without any restriction.

Finally, checking copy integrity is possible (i.e. checking a copy is identical to the original), but with poor
performances. For existing WORMs, there is basically no other solution than comparing each bit of data with
the original.

2.4. Virtual WORM proposal

Actually, the whole problems boils down to the fact that existing WORM systems all pay attention to securing
mechanisms that write information onto the media, but not to data itself. For instance, P-WORMs use
physically non-rewritable non-erasable media. E-WORMs restrict and control writing operations. However,
user data remains inherently unsecured.

Virtual WORM’s basic idea is to focus on data’s security, instead of its writing mechanisms1. Then, when
data is taken in charge by the system’s mechanisms and physically written, data is already secured.

Mainly, the solution we propose builds on S-WORMs. In
�
2.3, we have seen S-WORMs offer poor data

integrity protection, and unfortunately, there’s not much to do about that. So, with virtual WORMs, we
suggest to improve data integrity detection techniques that are suitable for legal evidence documents. To do so,
virtual WORMs make an extensive use of cryptographic mechanisms. Moreover, a signature-based time stamp
protocol is added to virtual WORMs to provide a secure time reference functionality (see section 3).

1US-patent 2001-075-TOU “Virtual WORM method and system” pending.

4

Time Stamped Virtual WORM System

Finally, we’ll demonstrate the resulting time stamped virtual WORMs are independent of hardware support
and optimize copy integrity (section 4).

3. A Time Stamped Virtual WORM System

In this section, we’ll first explain how our time stamped virtual WORM system works, and then analyze its
resistance to previously exposed threat model in

�
2.2.

3.1. General overview of the system

The system this paper proposes is based on a chain hashing technique (using one-way hash functions[MOV96,�
9] over blocks of data) and on secure time stamping with digital signatures:

 step 1: chain hashing the input

1. split data D in multiple data blocks D= ������������ ,

2. hash each block with H a one-way hash function: � ��� ����� ��� and ��� ��!#"$�&%(')�*�,+ �
�-�.�	+�/ � �0��+ � ,

3. and then store hashes along with blocks.

 step 2: secure time stamping

1. time stamp the last block hash,

2. digitally sign the time stamp,

3. store time stamp and its signature.

3.2. Down into time stamping mechanism

Let us now have a closer look to the time stamping mechanism. From a generic point of view, [Roos99] defines
a time stamp as a “token that binds information about time with the bit string”. Actually, this definition does
not make any assumption about security. However, in the context of this paper, time stamps are useless if time
cannot be certified within a given accuracy. So, basically, the stamping protocol consists in signing a time
stamp token containing current time 1 and hash value �-��2 � of document to time stamp: 354560798:�.�-��2 � ��1 � .
The signing key pair (PrvK, PubK) belongs to an entity named Time Stamp Authority (shortened TSA), and
is certified by a public key certificate. Time stamp’s security is guaranteed by the signature. The verification
process consists in comparing document’s hash with the H(D) contained in time stamp token, verifying validity
of TSA’s certificate and finally verifying time stamp’s signature.

On a performance point of view, time stamping being a “long” operation (RSA signatures are much longer
than SHA-1 hashes for instance), this paper proposes an improvement for virtual WORM systems. Similarly to
[BHS93,

�
2.2] where multiple blocks are time stamped together in a round, we suggest to time stamp together

multiple blocks. To do so, we simply time stamp � �<; 6 the last block hash. For a given round, with input
2 � � � ; 6=�����0� �<; 6 , time stamped virtual WORM’s output is:

� � ; 6�� �9; 6>���������0� �<; 6?� �<; 6@����� �<; 6A��1 � �*3B456*798C�.� �D; 6A��1 �
���=E#!F�0�,+ ; 6 � �-�.�	+�/ �9; 6A�*�G+ ; 6 �

Block hashes are chained so �:�<; 6 depends from �:� / �9; 6 and ���<; 6 , and �,� / �9; 6 from �,� /�H ; 6 and ��� / � ; 6 ...
Recursively, �,�<; 6 is linked to �I� ; 6 �����0�G�<; 6 . So, time stamping �:�<; 6 is equivalent to time stamping
� � ; 6J�����0� �<; 6 : all blocks are time stamped together through last block hash (note this is true because we are

5

Apvrille & Hughes

using chain hashing: if we were hashing each block independently, each block would need to be timestamped).
This increases performances as time stamping will only be done once in a while, but of course, it is impossible
to order chronologically blocks within a same round: all blocks of round r are considered to exist at 1 the time
stamp time of � �<; 6 . Consequently, implementations must find a balance between performances (time stamping
less frequently) and time stamp accuracy (time stamping often).

3.3. Cryptographic hardware on time stamped virtual WORM

Time stamp protocol described in
�
3.2 relies on an unconditional trust of the TSA. If TSA’s keys are

compromised, or if TSA can be bribed, time stamp can no longer be trusted. Many researchers have worked
on solutions to loosen this trust. [HS91,

�
5.1,

�
5.2] have proposed a linking scheme in which each time stamp

response is linked to previous responses, and a distributed scheme for which the final time stamp is built upon
responses of multiple TSAs. [BHS93, BdM91] have then proposed tree schemes that publish a time stamp
response out of the root of a binary tree of time stamp requests. Finally, [BLLV98] have suggested a binary
linking scheme based on rounds and hash functions.

Those solutions do loosen trust level of TSAs, but they unfortunately complicate the verification process
of time stamp responses: either multiple time stamps need to be retrieved, or a round value, or previous time
stamps etc (see [PRQMS98] for more precisions). For long term storage system, such design are usually
impratical: for instance, in the linking scheme, verification process would have to retrieve all previous time
stamps of the last 10 or 20 years...

In this paper, we’d like to find a compromise between convenience and trust of TSA. Consequently, we
suggest to use a dedicated tamper-evident (and if possible tamper-proof) time stamper hardware card. This
card would consist in:

 on-board cryptographic processors dedicated to time stamping, responding to a limited API such as
timestamp() , generateNewTSAKeys() and getPublicKey(). Access to TSA’s private key
should be strictly forbidden.

 two internal clocks: first clock is set up at factory level and cannot be updated, second clock is used to
time stamp documents and is synchronized from time to time through a secure link to an external reliable
clock (an atomic clock for instance) under some very restrictive conditions2. For instance, second clock
can only be re-synchronized if suggested update is very close to its current value, and if it hasn’t drifted
too far away from first clock. This idea is interesting because it does not require a permanent link to an
external reference clock but only from time to time.

The whole time stamper card should behave as an opaque module, strictly forbidding (and detecting) any
access to its internal components. For instance, FIPS 140-2 [NIST01] classifies different levels of security
requirements for cryptographic modules, and a few selected trusted/governmental organizations accept to test
and certify equipments according to FIPS 140-2 levels. Unconditional trust of TSA is then moved forward to
unconditional trust of certifying organization. Depending on the security level which has been attributed to the
card, a time stamp verifier can decide whether or not to trust the equipment.

3.4. Performances of our implementation

Practically, a Time Stamped Virtual WORM prototype has been implemented in Java. It is capable of processing
a given input stream (multiple files, directories or a tape), adding security data (we also refer to this as the
“WORMing” process) and writing the output to a directory or a tape. In our prototype, data is split into fixed
size blocks (default is 256KB), then chain hashed using SHA-1. At the end of each file (or at each tape mark on
a tape), the last block hash is time stamped using a Sha1WithRSA signature (key size can be configured) and the

2Pending US-patent number 2001-072-TOU “Trusted High Stability Time Source”.

6

Time Stamped Virtual WORM System

host’s local clock. The time stamp’s format complies to [TSP01]3. All cryptographic operations are currently
done by the software (standard algorithm implementations of Sun’s JDK), the only hardware we attach to our
prototype are two 9840 tape drives we read and write to.

Figure 2 shows the processing rates of our prototype for RSA-512, 1024 and 2048 signatures, compared
to pure read/write rates on 9840 tapes (reading or writing files on tapes, without securing them). As we had
expected it, the graph shows that time stamping less frequently gives better performances. A compromise needs
to be found for each application, depending on security and performance requirements.

0

1

2

3

4

5

6

7

8

9

1 10 100 1000

M
eg

a-
by

te
s

pe
r

se
co

nd

Mega-bytes per tape mark or per time stamp

"rsa512.dat"
"rsa1024.dat"
"rsa2048.dat"

"comparison.dat"

0

1

2

3

4

5

6

7

8

9

1 10 100 1000

M
eg

a-
by

te
s

pe
r

se
co

nd

Mega-bytes per tape mark or per time stamp

"rsa512.dat"
"rsa1024.dat"
"rsa2048.dat"

"comparison.dat"

Figure 2: Performance of a Java Time Stamped Virtual WORM prototype, on an Ultra Sparc 10 (400 MHz),
connected to two 9840 tape drives (one for input, the other for output). The highest curve is provided here
for comparison: it is the copying rate from one tape to another without using our prototype. The other results
show the “WORMing” rate in mega-bytes per second for RSA-512, 1024 and 2048 bit keys, according to how
frequent time stamps are done. Time stamping is performed each time a tape mark is encountered. Each test
has been done over a total volume of 10000 MB. On the X-axis, a logarithmic scale has been used.

4. Security analysis of time stamped virtual WORM systems

In the light of threat model in
�
2.2, this section intends to analyze results of proposed time stamped virtual

WORM system regarding data, copy and time integrity, and hardware support dependency.

3Actually, the time stamp request strictly complies to [TSP01], but work is currently under progress to make the response really
completely match [TSP01]. However, the differences should not impact our performance results.

7

Apvrille & Hughes

4.1. Data integrity

Concerning data integrity, over long periods of archival, both accidental (for instance a media support failure ?)
or intentional errors (a human attacker) may alter data. We believe in best cases the chain hashing mechanism
will detect it, or at worst the time stamp’s digital signature.

For instance, if block � + is replaced or erased (accidentally, or intentionally) by � +.K , the low probability
of collisions of hash function H guarantees that � +�K � �-�.� +L/ �M�0� +.K �ON� � + � ����� +L/ �M�*� + � . Modification is
consequently detected in its block hash.

Now, let us suppose both data block and block hash are modified4(see table 2), with ��+ K and �,+ K �
�-�.�	+�/ � �0��+ K � . By the way, note such an attack is probably a human attack as it is highly unlikely an accidental
error would produce the corresponding value for �C+ K . Such an error is not spotted immediately:

1. Before index i, there’s no problem: hashes match blocks.

2. At index i, we read � +LK , calculate P � �-��� +L/ �M�0� +.K � , and read � +�K . Error is not detected yet because
� +.K � P .

3. Then, at index i+1, we read �Q+SR � , and calculate P � �����:+ K �0��+�R �?� , which is different from �,+SR �:�
�����,+��*�G+SR ��� . That’s where we detect the error.

Table 2: A “smart” attack: block data is replaced by a new value, and block’s hash is forged to correspond to
new block

Expected data Real data
�I� �C� � �-���I� � �Q� �C� � �����I� �
��H �,H � ����� � �*�GH � ��H K �,H K � �-�.� � �0��H K �
��T �,T � ����� H �*�GT � �GT �,T � �-�.� H �*�GT �GN� �-�.� H?K �0��T �
�GU �	U � ����� T �*�VU � �VU �WU � �-�.� T �0�GU �
����� ����� ����� �����
� � � �:� �-�.� � / � �0� �X� � � � �,� �-��� � / � �*� �X�

So, the attack does not actually succeed. It only differs and diffuses the error, but the error will be detected.
If the attacker wants to delay detection of �I+ ’s modification as much as possible, he’ll have to modify all �	Y
with ZC[�� , but then error will be detected at time stamp’s verification. As a matter of fact, either the last block
hash has been modified to �:� K but not the time stamp, and then time stamp does not correspond to �\� K , or both
last block hash and time stamp token are modified to �\� K and ���,� K ��1 � , but then time stamp token’s signature
fails because 3 456*798 ���,� K ��1 ��N� 3 456*798 ���,����1 � . The attacker cannot build a fake signature because he does not
own TSA’s private key.

In such cases, one may consequently jump to the conclusion that the intermediate chain hashes are useless,
and that the whole system could work only with digitally signed time stamps. Technically speaking, when
dealing with human attacks, this is true, but one should keep in mind that the system is meant to store thousands
of tera bytes and that we are therefore very much concerned by performance... and accidental failures. In
most cases, two records will be accidentally swapped, or a record will be set to zeros (]@]@]^�����_]F]@]) or ones
(!@!@!`����� !F!@!). Based on frequent errors, a recovery program could try the most obvious fixes and check whether
data then corresponds to its hashes (see figure 3). How the recovery program is implemented is far beyond the
scope of this paper and highly depends on the support data is written to. The important point here is that if the
recovery program suggests a fix, it is possible to prove with a 100% guarantee if that fix is correct or not. For
legal evidence, this point is very important: on standard systems, if data has been damaged and the operator

4Same analysis may be applied if block and its hash are erased.

8

Time Stamped Virtual WORM System

finally manages to recover it, there is no proof recovered data is identical to the original. Concretely, this means
recovered data can be disputed.

Figure 3: Sure validation of recovery using chained hashed blocks. An error is detected in the retrieved file. The
recovery program suggests two different solutions. The first solution is okay, verifying chained hashes proves
the recovery is correct. Second solution is erroneous : an error is detected in chained hashes.

So, the benefits of chain hashing are:

 performances: they make it possible to time stamp multiple blocks in a round (see
�
3.2),

 error location: except for human attacks, intermediate hashes will detect accidental failures without
having to wait till the next time stamp (in 5, 10 or 20 MB for instance),

 proof of correct recovery: a fix can be proved to be correct or not.

4.2. Copy integrity with time stamped virtual WORMs

“Classical” WORM systems may achieve copy integrity by comparing bit to bit original data and its copy, but
this is clearly not very efficient. This paper proposes to use block hashes that have been stored for data integrity.

Suppose we have a time stamp virtual WORM tape a � that stores secure documents :

�I�9�C�A�������?�*�G�D�,�����.�,�b��1 � �03 4c60798 �.�	�5��1 �
a � is copied to a�H . Verifying copy integrity on a�H consists in:

1. checking hash blocks (� +) on a�� and a H are identical ;

2. checking time stamp signature on ab� and a H are identical.

Using 256 KB blocks, SHA-1 and RSA-2048, each block hash has a size of 20 bytes, and time stamp token
and its signature have an approximate size of 1 KB (256 bytes for the signature, 20 bytes for the hash, and the

9

Apvrille & Hughes

rest for TSA’s certificate or other parameters – this is an approximation). Consequently, for a 1 Giga byte file,
copy integrity algorithm will only have to check H0d�e H0fhgH9iLj(kml � dQnpo]@qr� . Only 0.008 % of the file has been bit
to bit compared...

4.3. Time integrity

Concerning time integrity, an attacker cannot alter date 1 contained in the time stamp token. If he tries to
change 1 to 1 K , verification of time stamp token’s signature fails : 3�456*798,��� � �01 ��N� 3s456*798	�.� � ��1 K � .

4.4. Hardware support dependency

Time stamped virtual WORM are independent of hardware supports as they are based on S-WORMs (
�
2.1). For

instance, if data on a first time stamped virtual WORM is output to a magnetic tape, and needs to be transferred
onto a disk, there is no security problem. Actually, data written on the tape is already secured, and whatever
support data is transfered to, it remains secured. So, time stamped virtual WORMs are truly independent of
hardware support. One should however note that they are not entirely hardware independent: in

�
3.3 use of a

time stamper card has been suggested. Fortunately, this should not be too limitative as the card should be built
as a stand-alone module responding to strict API specifications. If in 10 years the card needs to be replaced (for
instance because the on-board clock is out of service), we just need to find another hardware card compatible
with the API.

5. Extending security over years and future work

Over long periods, storage systems will have to face multiple problems, such as :

 hardware drive failures,

 recovery of lost data (disk crash...),

 upgrade to newer media support (with more capacity, better resistance...),

 synchronization of time stamper’s internal clock,

 renewal of TSA’s key pairs,

 compromission of keys or algorithms...

We believe this paper has addressed problems which concern hardware related problems. For instance,
hardware support independency will help use another support in case of a drive failure (

�
4.4), copy integrity

will help migrate all data onto another media (
�
4.2) and intermediate hashes help recover data (

�
4.1).

This paper has also explained how time stamping clock could be kept accurate, using from time to time a
secure link with an external clock (

�
3.3).

Concerning TSA-related problems, a few solutions have already arisen but are beyond the scope of this
single paper. Basically, work is currently under progress for:

 “just-in-time” upgrade procedures: changing keys or algorithms just before they might become
compromised,

 and Certificate Revocation List (CRL) system for the TSA to be able to renew its key pairs from time to
time.

10

Time Stamped Virtual WORM System

In
�
3.4, we have presented the performances of our software prototype. Issues now concern integration

of this prototype to other high performance storage systems, such as RAIT[HMD01] (Redundant Array of
Inexpensive Tapes), and optimization of performances on a dedicated hardware time stamper card prototype.

6. Conclusion

This paper has tried to contribute to security aspects of storage systems meant to keep document over years,
with direct application to documents to be reproduced as legal evidence.

The concept of virtual WORM has been introduced as a new solution to existing WORMs’ limitations.
Instead of securing the media, the drive or the system which manages data, virtual WORM focus on directly
securing data itself.

To do so, a data integrity detection technique based on cryptographic hash functions is used, and followed
by a digitally signed time stamp. This makes it possible to detect any modification of data, and provides a
high probability of valid recovery over accidental modifications. Using both intermediary hash functions and
digital signatures offers a good compromise between performance (hash functions are fast) for large volumes
of data and security (signature cannot be forged). Finally, we have demonstrated time stamped virtual WORMs
improve hardware independency, and time and copy integrity features. Those properties are particularly useful
for data meant to be kept over long periods.

7. Acknowledgements

We would like to thank Jacques Debiez for time he has accepted to spend with us sharing along his ideas
concerning physical WORM systems and clock synchronization. We also wish to thank Vincent Girier for his
helpful reviews and comments.

References

[Adap00] Adaptation du droit de la preuve aux technologies de l’information et relative à la signature
électronique, Loi n. 2000-230, in Journal Officiel du 14 mars 2000, p. 3968, France, March 13,
2000, in French.

[Afn01] Archivage électronique - Spécifications relatives à la conception et à l’exploitation de systèmes
informatiques en vue d’assurer la conservation et l’intégrité des documents stockés dans ces systèmes,
French standard AFNOR, NF Z42-013, December 2001, in French.

[Abs00] L. Absher, VolSafe(TM): A Discussion of Non-erasable, Non-rewritable Tape for the business
environment, White Paper, Louisville CO, July 2000.

[BdM91] J. Benaloh and M. de Mare, Efficient Broadcast Time-Stamping, Technical Report TR 91-1, August
1991.

[BHS93] D. Bayer, S. Haber and W. S. Stornetta, Improving the Efficiency and Reliability of Digital
Time-Stamping, In R.M Capocelli, A. de Santis and U. Vaccaro, editors, Sequences II: Methods in
Communication, Security and Computer Science, pp 329-334, Springer Verlag, New York, 1993.

[BLLV98] A. Buldas, P. Laud, H. Lipmaa and J. Villemson, Time-Stamping with Binary Linking Schemes,
in Advances on Cryptology (CRYPTO’98), H. Krawczyk Ed., vol. 1462 of Lecture Notes in Computer
Science, Springer, pp 486-501, 1998.

11

Apvrille & Hughes

[Esg00] Electronic Signatures in Global and National Commerce Act (“E-Sign”), Public Law 106-229, U.S.A,
June 2000.

[HMD01] J. Hughes, C. Milligan, J. Debiez, High Performance RAIT, Tenth NASA Goddard Conference
on Mass Storage Systems and Technologies and Nineteenth IEEE Symposium on Mass Storage Systems,
Maryland, U.S.A, April 2002.

[HS91] S. Haber and W. S. Stornetta, How to Time-Stamp a Digital Document, Journal of Cryptology, Vol.3,
No.2, pp.99-111, 1991.

[MOV96] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography, CRC Press, ISBN
0-8493-8523-7, October 1996.

[NIST01] National Institute of Standards and Technologies, NIST FIPS PUB 140-2, Security Requirements
for Cryptographic Modules, U.S. Department of Commerce, August 17, 2001.

[PRQMS98] B. Preneel, B. Van Rompay, J-J Quisquater, H. Massias, J. Serret Avila, TIMESEC: Design of a
timestamping system, Technical Report WP3, 1998.

[Roos99] M. Roos, Integrating Time-Stamping and Notarization, Master’s thesis, 1999.

[TSP01] C. Adams, P. Cain, D. Pinkas, R. Zuccherato, Internet X.509 Public Key Infrastructure Time Stamp
Protocol (TSP), Network Working Group, RFC 3161, August 2001.

[Wil97] R. Williams, P-WORM, E-WORM, S-WORM Is a Sausage a Wienie ?, Chicago IL, January 1997.

12

